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The Hilbert-Huang transform (HHT) is a new method for the analysis of nonstationary signals that allows
a signal’s frequency and amplitude to be evaluated with excellent time resolution. In this paper, the HHT
method is described, and its performance is compared with the Fourier methods of spectral analysis. The
HHT is then applied to the analysis of molecular dynamics simulation trajectories, including enhanced sampling
trajectories produced by reversible digitally filtered molecular dynamics. Amplitude-time, amplitude-frequency,
and amplitude-frequency-time spectra are all produced with the method and compared to equivalent results
obtained using wavelet analysis. The wavelet and HHT analysis yield qualitatively similar results, but the
HHT provides a better match to physical intuition than the wavelet transform. Moreover the HHT method is
able to show the flow of energy into low-frequency vibrations during conformational change events and is
able to identify frequencies appropriate for amplification by digital filters including the observation of a 10
cm-1 shift in target frequency.

1. Introduction

The analysis of the frequencies of motion present in a
molecular dynamics (MD) simulation helps our understanding
of the dynamics and has particular relevance to the study of
conformational change. It is commonly thought that conforma-
tional changes occur through large amplitude low frequency
motions. This assumption is the basis for the digitally filtered
molecular dynamics (DFMD) technique1 and the newer revers-
ible digitally filtered molecular dynamics (RDFMD) technique,2

both of which seek to enhance the rate of conformational change
by introducing energy specifically into the low-frequency
vibrations.

The Fourier transform is the most commonly used method
of spectral analysis, so much so that the term “spectrum” is
often taken to mean the Fourier spectrum. However, great care
must be taken in the physical interpretation of Fourier spectra
(and derived techniques), and uncritical use must be avoided.
All analysis methods based on the Fourier transform have similar
associated problems due to the way that the Fourier transform
acts on the data: the Fourier transform takes a data set, replicates
it to infinity both forward and backward in time, and calculates
the linear combination of sine waves necessary to reproduce
the replicated data set.3 The Fourier transform is a mathemati-
cally exact method but its physical interpretation is difficult.
Discontinuities in the infinite data set (arising either from the
original data or from the replication process) cause leakage away
from the true frequencies. The same problem occurs if the data
set contains time-localized events.3 The frequency leakage is
an unavoidable aspect of the Fourier transform because it must
fit invariant sine waves to a time-localized signal. A nonperiodic

signal, or one with time-localized events, is said to be a
“nonstationary” data set. Molecular dynamics simulations in the
condensed phase inevitably produce nonstationary data.

Derivatives of the Fourier method include the spectral
density,1,4 the spectrogram5 (also called a sliding frequency
distribution or SFD6) and wavelet analysis.7 To calculate a
spectrogram, the Fourier transform is applied using a window
that cuts out all of the data apart from a localized time section.
By sliding the window along the time axis and repeatedly
calculating the Fourier transform, a time-frequency distribution
can be obtained. For instance, the Fourier transform of the first
5 ps of a simulation may be compared with the Fourier transform
of the final 5 ps of data. Since the spectrogram method relies
on the Fourier transform, the same problem of nonstationarity
in the data occurs. With the spectrogram method, the data in
each time window must be stationary, or the same spectral
leakage effects of the basic Fourier transform will return. Even
if the data is stationary within a time window, the spectrogram
method has an additional problem of limited frequency resolu-
tion. To obtain precise time information, a narrow time window
must be employed. The frequency resolution is inversely
proportional to the length of data analyzed, so the Fourier
transform of a small time window gives a low-frequency
resolution. One cannot obtain both time-localized and frequency-
localized information with this method.

Wavelet analysis is a generalized spectrogram method.
Whereas the spectrogram essentially fits sine waves to portions
of the data set, the wavelet method fits a function chosen by
the user. The wavelet transform of a function,f (t), is defined
as
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where a is the scale dilation parameter,b is the translation
parameter, and the functiong(t) is the mother wavelet (with *
representing the complex conjugate). The mother wavelet used
in this work is the Morlet wavelet which is the product of a
complex sine wave with a localizing Gaussian envelope

where ω0 is a constant. A largeω0 gives good frequency
resolution at the expense of poor time resolution. A compromise
value of 6 was used in this work.

By varying the dilation parameter,a, the frequency analyzed
is varied. At each frequency, the translation parameter,b, may
take a range of values corresponding to the time position along
the data sample. A complete wavelet spectrum is obtained by
taking all appropriate values ofa and b. Wavelet transforms
where large parts of the scaled and translated mother wavelet
lie outside the data set are unreliable. This means that at low
frequencies (where the dilation parameter is large) there are few
points that may be analyzed. In practice, the computation of
the wavelet spectrum is usually performed using a series of
Fourier convolutions.

The use of wavelets in the analysis of MD trajectories is
limited by its poor time definition at low frequency. However,
of the three techniques discussed, the wavelet transform is the
best method for analyzing nonstationary data and has become
extremely popular in the field of image analysis and compres-
sion.8

Neither the spectrogram nor the wavelet method can simul-
taneously provide both good frequency and time resolution. The
recently described Hilbert-Huang transform (HHT)9 is a new
method for analyzing nonstationary signals in the frequency and
time domains. An examination of the application of this
technique to the analysis of molecular dynamics computer
simulations is reported in this paper.

2. Theory

2.1. Hilbert Transform. Whereas the Fourier transform takes
a time-domain signal,x(t), and moves it into the frequency
domain, the Hilbert transform10 of x(t) produces another time-
domain signal. Specifically, the Hilbert transform of a real-
valued functionx(t) over the range- ∞ < t < ∞ is another
real-valued functionx̃(t) defined by

This is the convolution ofx(t) with 1/πt. As a simple example,
the Hilbert transform of a cosine wave is a sine wave of the
same frequency and amplitude.

More generally, it may be shown10 that the Hilbert transform
of a signal,x(t), leaves the magnitude ofx(t) unchanged but
changes the phase byπ/2 (though no calculation of the phase
is performed). The rapid diminution of the 1/(t - u) function
means that its product with the signal is heavily biased to points
close tot. The Hilbert transform thus acts on time-localized
data.

The original signal,x(t), and its Hilbert transform,x̃(t), may
be considered to be part of a complex signalz(t)

This can also be written in terms of amplitude,A, and phase,φ

where

Knowing the phase of the signal at timet is useful because we
can then consider the rate of change of the phase angle with
time. The phase angle of a high frequency motion will change
more quickly than that of a lower frequency motion. The
relationship between frequency and rate of change of phase is
linear and the instantaneous frequency,f(t), is defined as

To summarize, if we have a signal,x(t), we can calculate the
signal’s Hilbert transform,x̃(t), and by combiningx(t) with x̃(t)
we can obtain the signal’s phase. The derivative of the phase
with respect to time gives the signal’s instantaneous frequency,
f(t). Unfortunately, to obtain meaningful and well-behaved
instantaneous frequencies, the wave to be analyzed must have
no riding waves and be locally symmetrical about its mean point
as defined by the envelopes of local maxima and local minima.
This type of wave is not common in real-world situations and
so the Hilbert transform has, until recently, not been widely
applied to real-world data.

In practice, the Hilbert transform may be computed by taking
the Fourier transform of the data, setting all of the negative-
frequency components to zero, doubling the positive-frequency
components, and back-transforming.10 This method has been
used by Huang et al.9 but can cause some problems. The Fourier
transform replicates the data set to infinity both forward and
backward in time and transforms this infinite data set. By using
the Fourier transform to compute the Hilbert transform, the
Hilbert transform is also working on this infinite data set. This
can cause ripples in the Hilbert spectrum at the ends of the
(unreplicated) data set because of the discontinuity in the data
produced by replication. These ripples create errors in the
instantaneous frequencies and amplitudes calculated from the
affected regions. The effect of this is to create regions at both
ends of the spectrum that are unreliable. The regions where these
artifacts were significant were excluded from our analysis. Other
methods for calculating the Hilbert transform are available, but
for computational ease and efficiency the Fourier method has
been used in this work. Alternative methods would likely have
very similar end-effect problems to the Fourier transform.

The minimum frequency that can be extracted from a dataset
with the HHT method is stated as 1/T by Huang et al.9 where
T is the length in time of the dataset. These limits placed on
the HHT process by the long-ranged nature of the Hilbert
transform have been taken into account in the spectra included
within this paper; a fuller discussion of the resolving capabilities
of the technique will follow in a later publication.

2.2. Empirical Mode Decomposition. Empirical Mode
Decomposition (EMD) is a new method of signal analysis
described in detail elsewhere.9 The aim of EMD is to decompose
a signal (which may be nonstationary) into a set of “intrinsic
mode functions” (IMFs), where the characteristics of each IMF
are such that they may be Hilbert transformed. Thus, through

z(t) ) A(t)eiφ(t) (5)

A(t) ) xx2(t) + x̃2(t) (6)

φ(t) ) tan-1(x̃(t)

x(t))

f (t) ) ( 1
2π) dφ(t)

dt
(7)

g(t) ) exp(iω0t) exp(- t2

2) (2)

x̃(t) ) ∫-∞

∞ x(u)

π(t - u)
du (3)

z(t) ) x(t) + ix̃(t) (4)
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the Hilbert transform, the instantaneous frequency of each IMF
at any point in time may be calculated.

An IMF is defined as a wave in which (a) the number of
extrema and the number of zero-crossings differ by at most one
and (b) at any point the mean of the envelope defined by the
local maxima and the envelope defined by the local minima is
zero. This definition satisfies the conditions necessary for the
Hilbert transform to work. The original signal may be recovered
by summing the IMF components. This also suggests the
algorithm to use for decomposing the input data into these IMFs.

The algorithm proceeds by subtracting each recovered IMF
from the original data set until either the recovered IMF or the
residual data is too small, in the sense of the integrals of their
absolute values or the residual data has no turning points. The
final residual component once all of the wavelike IMFs are
subtracted from the data is similar to the “DC component”
obtained by Fourier transform procedures but also contains the
overall trend. To find an IMF, the local mean is repeatedly
determined and subtracted from the data set until the number
of extrema and zero-crossings in the residual data differ by at
most one (this process is termed “sifting”). The local mean is
found by taking the mean of a curve through all of the maxima
and a curve through all of the minima. The maxima and minima
curves are, in the current work, defined by cubic spline
functions. Once a data set has been decomposed into its IMFs,
each IMF is separately Hilbert transformed. The output of the
Hilbert transform yields the instantaneous frequency and
amplitude at every point in time along each IMF. If the IMF
component is considered to be a harmonic oscillator of variable
amplitude and frequency, then its signal energy at timet can
be written in terms of the signal amplitude,A, and frequencyν

It is this energy that will be displayed in the HHT spectra that
follow.

2.3. Hilbert-Huang Transform. The combination of the
EMD method with the Hilbert transform provides a potentially
powerful analysis tool, recently named the HHT. The method
has been applied in various fields, including biology,9,11

geophysics,12 and solar physics.13 In this section, the method
will be tested on some simple signals; in the next, it will be
applied to data taken from MD simulations.

The HHT method was tested on three simple data sets to
verify our implementation of the method and to build confidence
in its use. The first was a sine wave with an abrupt change of
frequency around its midpoint. As this already met the criteria
for being an IMF, it was processed directly with the Hilbert
transform. The resulting graph showed the transition point and
distinguished the two frequencies with precision. The energy/
frequency/time data produced were then integrated along their
time axis to produce a frequency/energy distribution which we
compared with a Fourier spectral density plot.4 The two plots
were very similar, but the HHT plot had sharper peaks and
lacked the ripple artifacts present in the Fourier plot. The second
test data set was constructed by summing two constant
frequency, varying amplitude sine waves. This signal did not
meet the IMF criteria and required processing with the EMD
algorithm. Although EMD did not exactly reproduce the original
sine waves, the resulting IMFs showed excellent frequency
definition and gave the correct trend in amplitude values of the
signal components.

In the final test data set, the sum of two sine waves was once
again taken. On this occasion, the amplitudes of both waves
were fixed at the same value and the frequency of one wave

was set to 100 units. The frequency of the other wave was varied
linearly from 25 to 666 units but the sampling rate was chosen
to give a maximum sampled frequency of 500 units. Figure 1
plots the HHT of this wave. There is clearly a problem in the
ringed part of the spectrum. The physical interpretation of the
very low frequency (and low energy) data points is also unclear.
For the majority of the data set, however, the two clearest signals
are very sharply defined to the correct values. Also, the
rebounding of the high frequency signal when it reaches
approximately 500 units (the Nyquist limit) reminds us of the
necessity with any analysis method to sample the data suf-
ficiently.

The problems in Figure 1 are caused by the EMD method,
not the Hilbert transform. The ringed area of Figure 1 underlines
the need for all of the IMF components to be interpreted together
if the data being investigated do not possess a clear, physically
meaningful separation of scalessin such circumstances it is
impossible to interpret an isolated IMF.9 A related problem has
also been found by Huang9 and attributed to inaccuracies
introduced by the spline fitting procedure used in the algorithm.
The Akima spline14 function, which fits a curve to a small local
set of points was tried as a possible alternative to the
conventional cubic spline, which requires the solution of a set
of equations involving all datapoints. We found that this made
little difference to the final output. Even though the HHT method
seems to have problems in some circumstances, it will be
demonstrated below that useful and consistent data can be
extracted from MD trajectories using the procedure.

3. Applications

In this section, the HHT is applied to investigate conforma-
tional change in Brownian dynamics (BD) and molecular
dynamics simulations. Many of the MD trajectories were
generated using the reversible digitally filtered molecular
dynamics (RDFMD) method2 where the amplitudes of vibrations
in a chosen frequency range are amplified by repeated applica-
tion of a digital filter.

3.1. Brownian Dynamics.The combination of BD and a
simple analytic potential energy surface provides a simple test
case to examine the performance of the HHT when applied to

E(t) ∝ ν(t)2 A(t)2 (8)

Figure 1. HHT of two fixed-amplitude sine waves. One wave has a
frequency of 100 units, whereas the frequency of the other sine wave
varies linearly from 25 to 666 units. The energy is plotted on a
logarithmic scale. The region where the EMD algorithm has failed is
ringed.
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conformational transitions. A one-dimensional energy surface
with analytic gradients was created from a short Fourier series

The surface was designed to contain two potential wells, one
higher in energy than the other, with different characteristic
frequencies separated by a low barrier, and to rise steeply to a
high value on either side of these wells. The BD algorithm
employed is a variation15 of Ermak and Buckholtz16 consisting
of a standard velocity Verlet integrator, damped by friction and
driven by random forces withkBT/m) 0.0025 (m is the particle
mass), the friction constant,ê, set to 0.0001 and a time-step,
δt, of 0.02. Multiple simulation runs were performed with
different random number seeds until a trajectory containing a
transition event between the potential wells was observed. The
trajectory is shown in Figure 2. All of the graphs for the BD
simulation and analysis have arbitrary units.

Analysis of the trajectory using the HHT gave 10 IMFs; the
Hilbert transforms of these IMFs are plotted in Figure 3, along
with a Morlet wavelet transform of the same data set for
comparison. The mean signal energy of each IMF was calcu-
lated, and only points above 40% of mean are plotted for clarity
in the HHT figure. The two frequencies of motion associated
with vibrations in each of the two minima are clearly visible
and also an increase in low-frequency motion around the

transition point (circled in the Figure). The wavelet spectrum
of the data shows the same frequency and energy trends as the
HHT spectrum, but the behavior at low frequencies is less clear.
Also, the frequency definition in the wavelet spectrum is much
lower. Integrating the IMFs in the time dimension gives a plot
of amplitude versus frequency, shown in Figure 4. The figure
comprises two clear peaks to which Gaussian curves have been
fitted, and also shows large amplitude low-frequency motion.
The ratio of the two frequencies, taken as the centers of the
Gaussian peaks is 1.72. This compares well with the frequency
ratio of 1.62 obtained analytically by applying the normal mode
approximation. The discrepancy in the two frequency ratios is
a result of the motion in the wells being anharmonic, and
therefore the analytical derivation (using the harmonic ap-
proximation) is different to the numerical (real life) result.

The HHT analysis reveals a marked increase in the amplitude
of the low frequency motions around the transition point. This
is further clarified by Figure 2 which plots the signal energy of
the lowest frequencies as a function of time. An integrated
wavelet spectrum is also presented for comparison. Although
both methods are clearly capable of picking up the conforma-
tional change event, each provides a different picture of this
event. The wavelet transform shows a broad peak centered on
the point of transition, whereas the HHT gives a peak that rises
sharply at the transition point and rolls off less rapidly after it.
It seems that the low frequency components being detected by
the HHT are associated with the gradually damped high-
amplitude motions of the particle losing energy to friction after
transition to the lower energy state. This is different to the result
obtained from the integrated wavelet spectrum but has a clear
interpretation.

In conclusion, the HHT analysis of the BD trajectory has
shown that the HHT method is able to isolate characteristic
frequencies of motion (comparable to the analytical result) and
has revealed an increase in the energy of low frequency motion
just after the transition point in accordance with intuition. The
Morlet wavelet transform of the data is similar to the HHT result,
but with apparently poorer time resolution at lower frequency.

3.2. Molecular Dynamics. Unless otherwise stated, all
molecular dynamics simulations were performed using DL-
PROTEIN,17 modified to include the RDFMD algorithm.2 The
first MD simulation to be analyzed is a conformational transition
in gas-phase united-atom pentane induced by the RDFMD
method using a 0-150 cm-1 amplifying filter to add energy to
the low-frequency modes very gradually.2 The force field
parameters were derived from the OPLS parameters,18 SHAKE19

Figure 2. Trajectory taken by the BD simulation. The particle moves
from the higher potential well to the lower potential well. Also plotted
are the wavelet and HHT spectra integrated over the low-frequency
region defined in Figure 3.

V(x) ) 5 cos 2πx + 2 cos 4πx + 3
2

cosπx (9)

Figure 3. Left: HHT plot of the BD trajectory with an energy cutoff at 40% of the mean applied for clarity. The circled region highlights an
increase in low-frequency motion around the transition point. The horizontal line shows the high-frequency limit of the low-frequency region
integrated over in Figure 2. Right: Morlet wavelet transformation of the BD trajectory with low energy regions clipped to white for ease of
comparison.
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was applied to all bonds, a 2 fs time-step was employed and
the NVE ensemble was used with an initial temperature of 300
K. Figure 5 shows the trajectories of the two dihedral angles in
pentane (labeledθ1 andθ2). The HHT plot of the dihedral angles
and the HHT plot of just the frequency range amplified by the
filter are shown in Figure 6, along with wavelet transforms of
the same data for comparison. Not all of the points in each IMF
are displayed. The mean signal energy of each IMF is calculated,
and only points above half that mean are displayed. Figure 6
shows that while the pentane molecule is in the alternate
conformation (10.5-12 ps) the dihedrals oscillate at a higher
frequency. The low frequency spectra of Figure 6 show an
increase in the low frequency energy as each transition occurs.
The Morlet wavelet spectra in Figure 6 show the same basic
trends at higher frequencies, but become increasingly difficult
to interpret toward the lower end of the spectrum. In particular,
the very low frequency region targetted by the filter is quite
poorly resolved.

As has been noted earlier, the HHT spectrum can be
integrated in time to produce a spectral density equivalent. This
is not useful when the data set is nonstationary as in this case.
What is useful is to integrate the HHT spectrum in the frequency
axis to provide a measure of the variation with time of the signal
energy of any chosen frequency band. The integral of Figure 6
over the region below 25 cm-1 is shown in Figure 5. The
integration captures just the lowest frequency IMFs and clearly

shows the large increase in low-frequency energy during both
transitions; the first transition is directly induced by RDFMD,
and the second transition is spontaneous. An integrated wavelet
spectrum is also included for comparison; it shows a single broad
peak centered between the two transition points. The HHT
marginal spectrum has clearly resolved the two conformational
transitions and is in better agreement with physical intuition
than the Morlet wavelet.

The second simulation to be analyzed is gas-phase alanine
dipeptide, simulated using the united-atom OPLS force field.20

All bonds were constrained using SHAKE,19 a 2 fs time-step
was employed and the simulations were run in the NVE
ensemble with an initial temperature of 293 K. RDFMD was
used to enhance the low-frequency motion present in theφ and
ψ angles. Conformational change was caused by applying an
amplifying filter centered around 50 cm-1 five times, followed
by four applications of a similar filter centered around 40 cm-1.
It was necessary to use both a 50 cm-1 filter and a 40 cm-1

filter because it was found that after five applications the 50
cm-1 filter was no longer effective. It was postulated that the
predominant motion may have shifted in frequency from 50 to
40 cm-1 as energy was introduced into the oscillation.2 The
HHT method allows further investigation of this phenomenon
and shows that a frequency shift does indeed occur.

Figure 7 shows the twoφ-ψ trajectories of the alanine
dipeptide molecule in the initial potential well, one before any
RDFMD application and one after five 50 cm-1 amplifying
filters. Figure 8 shows the time-integrated frequency-energy
plots of the HHT spectrum for the 8-70 cm-1 segment of the
two trajectories. It is clear that not only has the majority of the
energy shifted to lower frequency but that the original filter
ideally should have targeted 40 cm-1 and the following filter
33 cm-1. In this case therefore, the HHT method is able to show
a shift in the characteristic vibrational frequency as energy is
added to the system. Owing to the short 4 ps time scale of this
experiment, Morlet wavelet visualization of the results is
impossible. A single Morlet wavelet contains just under 10
whole Fourier wavelengths, and as a result, the lowest frequency
obtainable with it on a data set of this length is just over 79
cm-1, rendering the entire region shown in Figure 8 inaccessible.
A wavelet with fewer Fourier wavelengths would facilitate the
analysis of lower frequency regions, but such a wavelet would
have a reduced frequency resolution.

Thus, in this system, the HHT method is able to identify the
frequencies appropriate for amplification by RDMFD, with the
accuracy of these frequencies being independently confirmed
based on the system’s response to RDFMD amplification.2 An
equivalent analysis using the Morlet wavelet is impossible.

The HHT analysis method presents an opportunity to analyze
the frequency and energy characteristics of a spontaneous
transition and to compare the results with an RDFMD-induced
transition. A spontaneous conformational transition occurred
during an attempt to equilibrate chloroform-solvated alanine
dipeptide.2 The dipeptide was solvated in a box of side 33 Å
containing 310 chloroform molecules. The united-atom OPLS
force field20 was employed and the simulation was run in the
NPT ensemble at 1 atm and 293 K using the Melchionna21

adaptation of the Hoover barostat and thermostat. SHAKE19 was
applied to all bonds and a 2 fstime-step employed. The region
around the transition point was analyzed using the HHT method
and the time-energy graph for 8-25 cm-1 is presented in Figure
9 along with the same analysis of a transition induced by
RDFMD using multiple applications of a 0-100 cm-1 amplify-
ing filter.2 Both transition paths take the conformation from the

Figure 4. Amplitude versus frequency for the BD trajectory. A
Gaussian curve has been fitted to each peak in order to calculate the
peak centers.

Figure 5. Two dihedral angles of pentane, along with the integrated
HHT signal energy in the 2-25 cm-1 region and the integrated wavelet
signal energy in the 16-25 cm-1 region (the lowest possible frequencies
were used in both cases).
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same initial minimum to the same final minimum via the same
transition point. The induced transition occurs approximately
five times faster than the natural transition (according to the
peak widths in Figure 9) but during both transitions energy
moves into the low-frequency modes and this low-frequency
energy is not present in the rest of the simulation.

Finally, a conformational transition in the pentapeptide
YPGDV solvated in TIP3P water22 has been analyzed by HHT.
The pentapeptide was solvated in a cubic box of side 28.9Å
containing 805 water molecules and a Na+ counter-ion. The

all-atom CHARMM23 force field was used along with the PME
method24 for electrostatics, SHAKE19 was applied to all bonds
containing hydrogen atoms, and a 2 fstime-step was employed.
The simulations were run primarily in the NVE ensemble using
a Langevin thermostat set at 300 K with a damping parameter
of 10 ps-1. YPGDV was simulated with the NAMD program25

modified for RDFMD. NAMD was developed by the Theoreti-
cal and Computational Biophysics Group in the Beckman
Institute for Advanced Science and Technology at the University
of Illinois at Urbana-Champaign. Conformational change was

Figure 6. Top left: the HHT plot of the dihedral angles of pentane. Bottom left: the low-frequency region of the HHT plot. Both HHT plots use
a logarithmic energy scale and a cutoff of half the mean. The regions where the low-frequency IMFs increase in energy during the transitions are
marked by arrows. Top right: a Morlet wavelet plot of the dihedral angles. Bottom right: the low-frequency region of the wavelet plot. Both
wavelet plots use a logarithmic energy scale, and have low values clipped to white for ease of comparison.

Figure 7. Alanine dipeptideφ-ψ trajectories around the initial
potential well. Left: trajectory before any filter applications. Right:
trajectory after four applications of the 50 cm-1 amplifying filter.

Figure 8. Time integrals of the HHT transforms of the two alanine
dipeptide trajectories for the frequency range 8-70 cm-1. The solid
line is for the initial trajectory and the dashed line is for the trajectory
resulting from applying four successive 50 cm-1 amplifying filters.

4874 J. Phys. Chem. A, Vol. 107, No. 24, 2003 Phillips et al.



enhanced by applying a 0-25 cm-1 amplifying filter. For further
details of this simulation, see Phillips et al.2 Spontaneous
conformational change was also observed and a plot of the eight
backbone dihedral angle trajectories during one of these
spontaneous conformational changes is shown in Figure 10a.

The eightφ and ψ trajectories were processed through the
EMD algorithm to produce 61 IMFs. The residual data after
the IMFs were extracted are shown in Figure 10b. The residual
data effectively show the trends in the dihedral angles as
explained in section 2.2. The HHT time-energy plots for the
1-25 and 1-10 cm-1 frequency bands are shown in Figure
10c. Large peaks in the 1-25 cm-1 frequency band are present
during the conformational change events (in anglesψ2, φ3, ψ4,
andφ5), vindicating the choice of a 0-25 cm-1 amplifying filter
for the RDFMD application on this system.

4. Conclusion

In this paper, the application of the HHT method to the
analysis of the nonstationary signals associated with a molecular
dynamics trajectory has been presented. The HHT method offers
an alternative to the wavelet and advantages over the spectro-
gram and Fourier transform methods. The Fourier transform
and spectral density have limited use in analyzing the frequency
characteristics of molecular dynamics trajectories. Care must
be taken not to over-interpret the Fourier spectra, and only data
sets where the system is in equilibrium (and the data set is
approximately stationary) may be analyzed. The spectrogram
has some use, but it is limited by the suboptimal way of trading-

off frequency and time resolution. The Morlet wavelet and HHT
methods yield qualitatively similar information; either can be
used to analyze important features of the amplitude-frequency-
time distribution of a signal. However, frequency or time
integration of HHT yields results more consistent with physical
intuition for the phenomena under investigation. The expected
observation by HHT of reduced oscillation frequency after the
addition of energy by the RDFMD2 technique offers corrobora-
tion that the spectra of low-frequency bands have physical
meaning.

A test on the HHT method indicates that artifacts in the
analysis are possible both near the ends of the dataset, because
of the properties of the Hilbert transform, and at time-points
where components of the signal cross in frequency. Huang noted
such artifacts and suggested that using an alternative spline
fitting procedure in the EMD algorithm may yield improvement.
Our application of the localized, cubic Akima spline did not
enhance the algorithm, although higher order splines may still
yield improvements. It is important to remember that where there
is no clear separation of scales in the data, all IMF components
must be considered together for meaning to be extracted from
the derived spectrum; all data presented in this paper are
consistent with this requirement.

Despite these artifacts, useful and consistent data have been
obtained from the analysis of conformational transitions. The
integration of the frequency axis to provide a time-energy
spectrum during a transition is particularly useful. The analysis
of five different conformational transitions provides a consistent
picture of an increase in the energy of low-frequency oscillations
during conformational transition events, vindicating the choices
made in designing the RDFMD amplifying filters for these
systems. Furthermore, a shift in the target vibrational frequency
on the addition of energy has also been observed and indepen-
dently confirmed based on the system’s response to RDFMD
amplification.2 Thus, the HHT may be used to select appropriate
frequencies for amplification in DFMD1 or RDFMD2 experi-
ments.

Finally, the similarities between the low-frequency energy
profiles of induced and spontaneous transitions validates the
DFMD1 and RDFMD2 method of promoting conformational
change by introducing energy into low-frequency modes.
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